

Connection Diagram

$\mathrm{CLR}_{1}-1$	56	$-\mathrm{CP}_{1}$
$\overline{O E}_{1}-2$	55	- $\overline{E N}_{1}$
$0_{0}-3$	54	- I_{0}
GND - 4	53	- GND
$0_{1}-5$	52	- l_{1}
$0_{2}-6$	51	$-\mathrm{I}_{2}$
$\mathrm{v}_{C C}-7$	50	- $V_{c c}$
$0_{3}-8$	49	$-\mathrm{I}_{3}$
$\mathrm{O}_{4}-9$	48	$-I_{4}$
$0_{5}-10$	47	- I_{5}
GND - 11	46	- GND
$\mathrm{O}_{6}-12$	45	- I_{6}
$0_{7}-13$	44	$-I_{7}$
$\mathrm{O}_{8}-14$	43	- I_{8}
$\mathrm{O}_{9}-15$	42	- I_{9}
$0_{10}-16$	41	-1_{10}
$00_{11}-17$	40	- 1_{11}
GND-18	39	- GND
$0_{12}-19$	38	$-l_{12}$
$\mathrm{O}_{13}-20$	37	-113
$0_{14}-21$	36	$-l_{14}$
$V_{C C}-22$	35	- v_{cc}
$0_{15}-23$	34	$-l_{15}$
$0_{16}-24$	33	-1_{16}
GND - 25	32	- GND
$0_{17}-26$	31	1_{17}
$\overline{\mathrm{OE}}_{2}-27$	30	- $\overline{\mathrm{EN}}_{2}$
$\overline{\mathrm{CLR}}_{2}-28$	29	$-\mathrm{CP}_{2}$

Functional Description

The ACTQ18823 consists of eighteen D-type edge-trig gered flip-flops. These have 3-STATE outputs for bus systems organized with inputs and outputs on opposite sides. The device is byte controlled with each byte functioning identically, but independent of the other. The control pins can be shorted together to obtain full 16-bit operation. The following description applies to each byte. The buffered clock $\left(\mathrm{CP}_{\mathrm{n}}\right)$ and buffered Output Enable ($\overline{\mathrm{OE}}_{\mathrm{n}}$) are common to all flip-flops within that byte. The flip-flops will store the state of their individual D inputs that meet set-up and hold time requirements on the LOW-to-HIGH CP n_{n} transition. With $\overline{\mathrm{OE}}_{\mathrm{n}}$ LOW, the contents of the flip-flops are available at the outputs. When $\overline{\mathrm{OE}}_{\mathrm{n}}$ is HIGH, the outputs go to the impedance state. Operation of the $\overline{\mathrm{OE}}_{\mathrm{n}}$ input does not affect the state of the flip-flops. In addition to the Clock and Output Enable pins, there are Clear ($\overline{\mathrm{CLR}}_{\mathrm{n}}$) and Clock Enable ($\overline{E N}_{n}$) pins. These devices are ideal for parity bus interfacing in high performance systems.
When $\overline{\mathrm{CLR}}_{\mathrm{n}}$ is LOW and $\overline{\mathrm{OE}}_{\mathrm{n}}$ is LOW, the outputs are LOW. When $\overline{\mathrm{CLR}}_{\mathrm{n}}$ is HIGH, data can be entered into the flip-flops. When $\overline{\mathrm{EN}}_{\mathrm{n}}$ is LOW, data on the inputs is transferred to the outputs on the LOW-to-HIGH clock transition When the $\overline{\mathrm{EN}}_{\mathrm{n}}$ is HIGH, the outputs do not change state, regardless of the data or clock input transitions.

Function Table (Note 1)

Inputs					Internal	Output	Function
$\overline{\mathrm{OE}}$	$\overline{\mathrm{CLR}}$	$\overline{\mathrm{EN}}$	CP	I_{n}	Q	O_{n}	
H	X	L	\sim	L	L	Z	High Z
H	X	L	\sim	H	H	Z	High Z
H	L	X	X	X	L	Z	Clear
L	L	X	X	X	L	L	Clear
H	H	H	X	X	NC	Z	Hold
L	H	H	X	X	NC	NC	Hold
H	H	L	\sim	L	L	Z	Load
H	H	L	\sim	H	H	Z	Load
L	H	L	\sim	L	L	L	Load
L	H	L	\sim	H	H	H	Load

H= HIGH Voltage Level
L= LOW Voltage Level
X= Immaterial
Z= High Impedance
= LOW-to-HIGH Transition
NC= No Change
Note 1: The table represents the logic for one byte. The two bytes are independent of each other and function identically.

Absolute Maximum Ratings(Note 2)	
Supply Voltage (V_{CC})	-0.5 V to +7.0 V
DC Input Diode Current (I_{IK})	
$\mathrm{V}_{1}=-0.5 \mathrm{~V}$	-20 mA
$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}+0.5 \mathrm{~V}$	+20 mA
DC Output Diode Current (l_{OK})	
$\mathrm{V}_{\mathrm{O}}=-0.5 \mathrm{~V}$	-20 mA
$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	+20 mA
DC Output Voltage (V_{O})	-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
DC Output Source/Sink Current (10)	$\pm 50 \mathrm{~mA}$
DC V ${ }_{\text {CC }}$ or Ground Current	
Per Output Pin	$\pm 50 \mathrm{~mA}$
Junction Temperature	
PDIP/SOIC	$+140^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
ESD Last Passing Voltage (Min)	4000 V

Recommended Operating Conditions

Supply Voltage (V_{CC})	4.5 V to 5.5 V
Input Voltage (V_{l})	OV to V_{Cc}
Output Voltage (V_{O})	0 V to V_{Cc}
Operating Temperature (T_{A})	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Minimum Input Edge Rate ($\Delta \mathrm{V} / \Delta \mathrm{t}$)	$125 \mathrm{mV} / \mathrm{ns}$
$\mathrm{V}_{\text {IN }}$ from 0.8 V to 2.0 V	
$\mathrm{V}_{\mathrm{CC}} @ 4.5 \mathrm{~V}, 5.5 \mathrm{~V}$	

DC Electrical Characteristics

Symbol	Parameter	V_{CC} (V)	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Units	Conditions
			Typ	Guaranteed Limits			
$\overline{\mathrm{V}_{\mathrm{IH}}}$	Minimum HIGH Input Voltage	$\begin{aligned} & \hline 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \hline 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$
$\overline{\mathrm{V} \text { IL }}$	Maximum LOW Input Voltage	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.8 \end{aligned}$	$\begin{aligned} & \hline 0.8 \\ & 0.8 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$
$\overline{\mathrm{V}_{\mathrm{OH}}}$	Minimum HIGH Output Voltage	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 4.49 \\ & 5.49 \end{aligned}$	$\begin{aligned} & 4.4 \\ & 5.4 \end{aligned}$	$\begin{aligned} & 4.4 \\ & 5.4 \end{aligned}$	V	$\mathrm{I}_{\text {OUT }}=-50 \mu \mathrm{~A}$
		$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & 3.86 \\ & 4.86 \end{aligned}$	$\begin{aligned} & 3.76 \\ & 4.76 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA} \text { (Note 3) } \\ & \hline \end{aligned}$
$\overline{\mathrm{V} \text { OL }}$	Maximum LOW Output Voltage	$\begin{aligned} & \hline 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \hline 0.001 \\ & 0.001 \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 0.1 \end{aligned}$	V	$\mathrm{I}_{\text {OUT }}=50 \mu \mathrm{~A}$
		$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & 0.36 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.44 \\ & 0.44 \end{aligned}$	V	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}(\text { Note } 3) \\ & \hline \end{aligned}$
$\overline{\mathrm{l}} \mathrm{l}$	Maximum 3-STATE Leakage Current	5.5		± 0.5	± 5.0	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IL}}, \mathrm{~V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}, \text { GND } \end{aligned}$
I_{N}	Maximum Input Leakage Current	5.5		± 0.1	± 1.0	$\mu \mathrm{A}$	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}$, GND
$\mathrm{I}_{\text {CTT }}$	Maximum I ${ }_{\text {cc }} /$ Input	5.5	0.6		1.5	mA	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}-2.1 \mathrm{~V}$
I_{CC}	Maximum Quiescent Supply Current	5.5		8.0	80.0	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ or GND
ToLD	Minimum Dynamic Output Current (Note 4)	5.5			75	mA	$\mathrm{V}_{\text {OLD }}=1.65 \mathrm{~V}$ Max
IOHD					-75	mA	$\mathrm{V}_{\mathrm{OHD}}=3.85 \mathrm{~V}$ Min
$\mathrm{V}_{\text {OLP }}$	Quiet Output Maximum Dynamic V_{OL}	5.0	0.5	0.8		V	(Note 6)(Note 7)
$\mathrm{V}_{\text {OLV }}$	Quiet Output Minimum Dynamic $\mathrm{V}_{\text {OL }}$	5.0	-0.5	-0.8		V	(Note 6)(Note 7)
$\mathrm{V}_{\text {OHP }}$	Maximum Overshoot	5.0	$\mathrm{V}_{\mathrm{OH}}+1.0$	$\mathrm{V}_{\mathrm{OH}}+1.5$		V	(Note 5)(Note 7)
$\mathrm{V}_{\text {OHV }}$	Minimum V_{CC} Droop	5.0	$\mathrm{V}_{\mathrm{OH}}-1.0$	$\mathrm{V}_{\mathrm{OH}}-1.8$		V	(Note 5)(Note 7)
$\mathrm{V}_{\text {IHD }}$	Minimum High Voltage Level	5.0	1.7	2.0		V	(Note 5)(Note 8)
$\mathrm{V}_{\text {ILD }}$	Maximum Low Dynamic Input Voltage Level	5.0	1.2	1.2		V	(Note 5)(Note 8)

Note 3: All outputs loaded; thresholds associated with output under test.
Note 4: Maximum test duration 2.0 ms , one output loaded at a time.
Note 5: Worst case package.
Note 6: Maximum number of outputs that can switch simultaneously is $n .(n-1)$ outputs are switched LOW and one output held LOW.
Note 7: Maximum number of outputs that can switch simultaneously is n. $(n-1)$ outputs are switched HIGH and one output held HIGH.
Note 8: Maximum number of data inputs (n) switching. ($n-1$) input switching 0 V to 3 V . Input under test switching 3V to threshold ($\mathrm{V}_{\text {ILD }}$).

AC Electrical Characteristics

Symbol	Parameter	V_{Cc} (V) (Note 9)	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		Units
			Min	Typ	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency	5.0	100			90		MHz
$t_{\text {PHL }}$ $\mathrm{t}_{\mathrm{PLH}}$	Propagation Delay $C P_{n} \text { to } O_{n}$	5.0	$\begin{aligned} & \hline 2.0 \\ & 2.0 \end{aligned}$		$\begin{aligned} & 9.0 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 9.5 \end{aligned}$	ns
$\mathrm{t}_{\text {PHL }}$	$\begin{aligned} & \text { Propagation Delay } \\ & \overline{\mathrm{CLR}}_{\mathrm{n}} \text { to } \mathrm{O}_{\mathrm{n}} \end{aligned}$	5.0	2.0		9.0	2.0	9.5	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PZL}} \\ & \mathrm{t}_{\mathrm{PZH}} \end{aligned}$	Output Enable Time	5.0	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$		$\begin{aligned} & 9.0 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 10.0 \end{aligned}$	ns
$\begin{aligned} & \hline t_{\mathrm{PLZ}} \\ & \mathrm{t}_{\mathrm{PHZ}} \end{aligned}$	Output Disable Time	5.0	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$		$\begin{aligned} & 7.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 7.5 \\ & 8.5 \end{aligned}$	ns

Note 9: Voltage Range 5.0 is $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$.

AC Operating Requirements

Symbol	Parameter	V_{Cc} (V)	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$	Units
		(Note 10)	Typ	Guaranteed Minimum		
t_{s}	Setup Time, HIGH or LOW, Input to Clock	5.0		3.0	3.0	ns
t_{H}	Hold Time, HIGH or LOW, Input to Clock	5.0		1.5	1.5	ns
t_{s}	Setup Time, HIGH or LOW, Enable to Clock	5.0		3.0	3.0	ns
t_{H}	Hold Time, HIGH or LOW, Enable to Clock	5.0		1.5	1.5	ns
$t_{\text {W }}$	$\overline{\mathrm{CP}}_{\mathrm{n}}$ Pulse Width, HIGH or LOW	5.0		4.0	4.0	ns
$t_{\text {W }}$	$\overline{\mathrm{CLR}}_{\mathrm{n}}$ Pulse Width, HIGH or LOW	5.0		4.0	4.0	ns
$t_{\text {REC }}$	Recovery Time, $\overline{C L R}_{n}$ to CP_{n}	5.0		6.0	6.0	ns

Note 10: Voltage Range 5.0 is $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$.

Extended AC Electrical Characteristics

Symbol	Parameter	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=\mathrm{Com} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ 16 \text { Outputs Switching } \\ \text { (Note 12) } \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=\mathrm{Com} \\ \mathrm{C}_{\mathrm{L}}=250 \mathrm{pF} \\ \text { (Note 13) } \end{gathered}$		Units
		Min	Typ	Max	Min	Max	
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay $C P_{n} \text { to } O_{n}$	$\begin{aligned} & 5.2 \\ & 5.3 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & \hline 7.6 \\ & 7.8 \end{aligned}$	$\begin{aligned} & \hline 7.0 \\ & 6.8 \end{aligned}$	$\begin{gathered} 9.8 \\ 10.0 \end{gathered}$	ns
$\mathrm{t}_{\text {PHL }}$	$\begin{aligned} & \text { Propagation Delay } \\ & \overline{C L R}_{n} \text { to } O_{n} \end{aligned}$	4.8	5.3	6.2	5.2	7.5	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Output Enable Time	$\begin{aligned} & 4.2 \\ & 4.4 \end{aligned}$	$\begin{aligned} & \hline 4.8 \\ & 5.3 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.0 \end{aligned}$	(Note 14)		ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Output Disable Time	$\begin{aligned} & \hline 3.5 \\ & 4.6 \end{aligned}$	$\begin{aligned} & 4.2 \\ & 5.2 \end{aligned}$	$\begin{aligned} & \hline 4.8 \\ & 6.0 \end{aligned}$	(Note 15)		ns
$\mathrm{t}_{\mathrm{OSHL}}$ (Note 11)	Pin to Pin Skew $C P_{n} \text { to } O_{n}$			1.0			ns
tosth (Note 11)	Pin to Pin Skew $C P_{n}$ to O_{n}			1.0			ns
$\mathrm{t}_{\mathrm{OSHL}}$ (Note 11)	Pin to Pin Skew $\overline{\mathrm{CLR}}_{\mathrm{n}}$ to Output			1.0			ns
$\mathrm{t}_{\mathrm{OST}}$ (Note 11)	Pin to Pin Skew CP_{n} to Output			1.5			ns

Note 11: Skew is defined as the absolute value of the difference between the actual propagation delays for any two separate outputs of the same device, The specification applies to any outputs switching HIGH-to-LOW ($\mathrm{t}_{\mathrm{OSHL}}$), LOW-to-HIGH ($\mathrm{t}_{\mathrm{OSLH}}$), or any combination switching LOW-to-HIGH and/or HIGH to-LOW (tost)

Note 12: This specification is guaranteed but not tested. The limits apply to propagation delays for all paths described switching in phase (il.e., all LOW-to HIGH, HIGH-to-LOW, etc.)
Note 13: This specification is guaranteed but not tested. The limits represent propagation delays with 250 pF load capacitors in place of the 50 pF load capacitors in the standard AC load. This specification pertains to single output switching only.
Note 14: 3-STATE delays are load dominated and have been excluded from the datasheet.
Note 15: The Output Disable Time is dominated by the RC network ($500 \Omega, 250 \mathrm{pF}$) on the output and has been excluded from the datasheet.

Capacitance

Symbol	Parameter	Typ	Units	Conditions
C_{IN}	Input Pin Capacitance	4.5	pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
C_{PD}	Power Dissipation Capacitance	95	pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

FACT Noise Characteristics

The setup of a noise characteristics measurement is critical to the accuracy and repeatability of the tests．The following is a brief description of the setup used to measure the noise characteristics of FACT．

Equipment：

Hewlett Packard Model 8180A Word Generator
PC－163A Test Fixture
Tektronics Model 7854 Oscilloscope
Procedure：
1．Verify Test Fixture Loading：Standard Load 50 pF ， 500Ω ．
2．Deskew the HFS generator so that no two channels have greater than 150 ps skew between them．This requires that the oscilloscope be deskewed first．It is important to deskew the HFS generator channels before testing．This will ensure that the outputs switch simultaneously．
3．Terminate all inputs and outputs to ensure proper load－ ing of the outputs and that the input levels are at the correct voltage．
4．Set the HFS generator to toggle all but one output at a frequency of 1 MHz ．Greater frequencies will increase DUT heating and affect the results of the measure－ ment．

$\mathrm{V}_{\mathrm{OHV}}$ and $\mathrm{V}_{\mathrm{OLP}}$ are measured with respect to ground reference．
Input pulses have the following characteristics：$f=1 \mathrm{MHz}, \mathrm{t}_{\mathrm{r}}=3 \mathrm{~ns}$ ， $\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}$ ，skew $<150 \mathrm{ps}$ ．
FIGURE 1．Quiet Output Noise Voltage Waveforms
5．Set the HFS generator input levels at OV LOW and 3V HIGH for ACT devices and 0 V LOW and 5 V HIGH for AC devices．Verify levels with an oscilloscope．
$\mathrm{V}_{\mathrm{OLP}} / \mathrm{V}_{\mathrm{OLV}}$ and $\mathrm{V}_{\mathrm{OHP}} / \mathrm{V}_{\mathrm{OHV}}$ ：
－Determine the quiet output pin that demonstrates the greatest noise levels．The worst case pin will usually be the furthest from the ground pin．Monitor the output volt－ ages using a 50Ω coaxial cable plugged into a standard SMB type connector on the test fixture．Do not use an active FET probe．
－Measure $\mathrm{V}_{\text {OLP }}$ and $\mathrm{V}_{\text {OLV }}$ on the quiet output during the worst case transition for active and enable．Measure $\mathrm{V}_{\mathrm{OHP}}$ and $\mathrm{V}_{\mathrm{OHV}}$ on the quiet output during the worst case active and enable transition．
－Verify that the GND reference recorded on the oscillo－ scope has not drifted to ensure the accuracy and repeat－ ability of the measurements．
$V_{\text {ILD }}$ and $V_{\text {IHD }}$ ：
－Monitor one of the switching outputs using a 50Ω coaxial cable plugged into a standard SMB type connector on the test fixture．Do not use an active FET probe．
－First increase the input LOW voltage level， V_{IL} ，until the output begins to oscillate or steps out a min of 2 ns ． Oscillation is defined as noise on the output LOW level that exceeds $\mathrm{V}_{\text {IL }}$ limits，or on output HIGH levels that exceed V_{IH} limits．The input LOW voltage level at which oscillation occurs is defined as $\mathrm{V}_{\text {ILD }}$ ．
－Next decrease the input HIGH voltage level， V_{IH} ，until the output begins to oscillator steps out a min of 2 ns ． Oscillation is defined as noise on the output LOW level that exceeds $\mathrm{V}_{\text {IL }}$ limits，or on output HIGH levels that exceed $V_{I H}$ limits．The input HIGH voltage level at which oscillation occurs is defined as $\mathrm{V}_{\text {IHD }}$ ．
－Verify that the GND reference recorded on the oscillo－ scope has not drifted to ensure the accuracy and repeat－ ability of the measurements．

FIGURE 2．Simultaneous Switching Test Circuit

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

ϕ	$0.13(\mathrm{M}$	A	$\mathrm{B}(\mathrm{S})$	$\mathrm{C}(\mathrm{S})$

DETAIL A
TYPICAL
MTDS6 (REV B')
56-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide Package Number MTD56

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com
